

# Opposite trends of NH and SH monsoon in the past century

### Jian Cao Nuist

Co-authors: Hao Wang, Haikun Zhao, Chao Wang(NUIST, CHINA) B. Wang (Hawaii University, USA) Xiaowei Zhu (Ningxia Climate Center, CHINA)

- Cao, J., H. Wang, B. Wang, H. Zhao C. Wan. X. Zhu, 2021: Higher Sensitivity of Northern Hemisphere Monsoon to Anthropogenic Aerosol Than Greenhouse Gases. Geophysical Research Letters, 49, e2022GL100270.
- Cao, J., X. Lian, M. Cao, B. Wang, X. Zhu, H. Zhao, 2023: Wettening of Southern Hemisphere land monsoon during 1901-2014. Journal of Climate. 36, 8497-8512.



# Outline

- Part 1- Introduction
- Part 2- Data and methods
- > Part 3- External forcing drive long-term NH monsoon change
- Part 4- Tropical SST gradient forced SH monsoon increase
- Part 5- Summary

### Part 1: Global monsoon





#### Global mean surface air temperature



Figure 4.2 | Selected indicators of global climate change from CMIP6 historical and scenario simulations.

## Part 1: NH monsoon vs. SH monsoon



#### **Past 21K:** Anti-phase relationship between NH and SH monsoon precipitation due to ice melting



### Part 1: NH monsoon vs. SH monsoon

1900



#### Past 1K: Role of GMST



1000



#### Future one century NH: Thermal Contrast SH: ???



2100

2000

Wang et al. 2020

### **Part 1: Global Warming and Monsoons**



#### SSP5-8.5 (2081-2100)



(a) Best estimate (scaled)



Figure 4.41 | High-warming storylines for changes in annual mean temperature. Figure 4.42 | High-warming storylines for changes in annual mean precipitation.

(a) Global land monsoon precipitation index





Figure 4.14 | Time series of global land monsoon precipitation and Northern Hemisphere summer monsoon (NHSM) circulation index anomalies

### **Part 1: Changes in NH Monsoon**





Detection and attribution of global land monsoon precipitation changes under different forcing agents. (a) global land monsoon precipitation anomalies. Linear trends in global land monsoon precipitation. (c) The results of the optimal fingerprinting detection.

### **Part 1: Global Warming and Monsoons**









- Why is NH monsoon precipitation weakened since 1900s, but the SH monsoon rainfall increased?
- Why does the AA forcing dominate the declining NHLM precipitation, although AA's impacts on Earth system radiative forcing and GMST are less than GHG?
- > Which mechanism is responsible for the increase of SH monsoon?

### **Part 2: Model data and Method**



| Var                 | Source                                                    | Usage                               |
|---------------------|-----------------------------------------------------------|-------------------------------------|
| Surface temperature | HadCRUT4                                                  |                                     |
| Precipitation       | Global Precipitation Climatology Centre (GPCC), Version 7 | Examine the long-<br>term change in |
|                     | Climate Research Unit (CRU), Version 4.04                 | monsoon                             |
|                     | the University of Delaware (UDel), Version 4.01           | Define the monsoon                  |
|                     | Global Precipitation Climatology Project (GPCP)           | domain                              |

Monsoon domain is defined where the precipitation difference between summer (May-September, MJJAS) and winter (November-March) exceeds 2.5 mm/d, and summer precipitation accounts for at least 55% of the annual total.





| CMIP6 models description |                          |                |                          |
|--------------------------|--------------------------|----------------|--------------------------|
| Model name               | Atmosphere<br>resolution | Model name     | Atmosphere<br>resolution |
| ACCESS-CM2               | <b>192x144</b>           | CESM2-WACCM    | 288x192                  |
| ACCESS-ESM1-5            | <b>192x145</b>           | E3SM-1-0       | 360x180                  |
| BCC-CSM2-MR              | 320x160                  | E3SM-1-1       | 360x180                  |
| CESM2                    | 288x192                  | EC-Earth3-Veg  | 512x256                  |
| CNRM-CM6-1               | 256x128                  | EC-Earth3      | 512x256                  |
| CanESM5                  | <b>128x64</b>            | FGOALS-f3-L    | 288x180                  |
| FGOALS-g3                | <b>180x80</b>            | FIO-ESM-2-0    | 288x192                  |
| GFDL-ESM4                | 288x180                  | GISS-E2-1-G-CC | 144x90                   |
| GISS-E2-1-G              | 144x90                   | GISS-E2-1-H    | 144x90                   |
| HadGEM3-GC31-LL          | <b>192x144</b>           | IITM-ESM       | 192x94                   |
| <b>IPSL-CM6A-LR</b>      | 144x143                  | INM-CM4-8      | 180x120                  |
| MIROC6                   | 256x128                  | INM-CM5-0      | 180x120                  |
| MRI-ESM2-0               | 320x160                  | MCM-UA-1-0     | 96x80                    |
| NorESM2-LM               | 144x96                   | MIROC-ES2L     | 128x64                   |
| AWI-ESM-1-1-LR           | 192x96                   | MPI-ESM1-2-HR  | 384x192                  |
| BCC-ESM1                 | 128x64                   | MPI-ESM1-2-LR  | 192x96                   |
| CAMS-CSM1-0              | 320x160                  | NESM3          | 192x96                   |
| CESM2-FV2                | 144x96                   | NorCPM1        | 144x96                   |
| CESM2-WACCM-<br>FV2      | 144x96                   | SAM0-UNICON    | 288x192                  |



### Part 3: NH monsoon change



#### Linear trends of Observed and simulation NHLM precipitation





|            | Trend (mm/d/cent)       |
|------------|-------------------------|
| OBS        | -0.15                   |
| Historical | -0.15(DAMIP),-0.11(All) |
| GHG        | +0.10                   |
| AA         | -0.27                   |

## Part 3: NH monsoon change



#### Higher Sensitivity of NHLM to AA than GHG



anomalies versus GMST changes





Top of Atmosphere (TOA) radiative forcing (W m<sup>-2)</sup>

| Model name | aerosols RF | GHG RF |
|------------|-------------|--------|
| MME        | -1.14       | 2.94   |

Moisture budget analysis:  $P' \approx E' - \langle \overline{\omega} \partial_p q' \rangle - \langle \omega' \partial_p \overline{q} \rangle$ GHG: TH (+), DY (-) Cancelation AA: E\* (+), TH (+), DY\* (+) Amplification ~11%/K for AA v.s. ~2.2%/K for GHG **Part 3: Results** 



### Surface energy change explains the evaporation term



In monsoon region, the surface evaporation is more constrained by the available energy for evaporation (Liepert et al., 2004; Roderick et al., 2014).

$$E = \frac{\mathbf{m}R_n + \rho_a c_p(\delta_e)g_a}{\lambda_v(m+\gamma)}$$





The upper row shows net surface irradiance,

the middle row shows downward solar radiation,

and the bottom row shows the aerosol optical depth



### Part 3: NH monsoon change





0

-6 -4 -2 -1

-8

Comparison of atmospheric variables responds to anthropogenic aerosol (AA) (left) and greenhouse gases (GHG) (right) forcing. All changes are scaled by the corresponding global mean surface temperature (GMST) changes from hist-aer and hist-GHG experiments. (a and b) for net surface irradiance (W m<sup>-2</sup> K<sup>-1</sup>). (c and d) for surface temperature (shading, K K<sup>-1</sup>) and sea level pressure (contour, Pa K<sup>-1</sup>). (e and f) for precipitation (mm d<sup>-1</sup> K<sup>-1</sup>) and 850 hPa circulation (m s<sup>-1</sup> K<sup>-1</sup>). (g) and (h) for vertical pressure velocity (hPa d<sup>-1</sup> K<sup>-1</sup>) at 500 hPa. The black and red lines outline the Northern Hemisphere (NH) land monsoon region

### Part 3: NH monsoon change







# Outline

- Part 1- Introduction
- Part 2- Model and method
- Part 3- External forcing drive long-term NH monsoon change
- Part 4- Tropical SST gradient forced SH monsoon increase
- Part 5- Summary

### **Part 4: SH monsoon change**





Figure 1 Climatology of boreal winter (DJFM) precipitation (mm d<sup>-1</sup>) and 850 hPa circulation (m s<sup>-1</sup>) for the period of 1985-2014. The observation and reanalysis are shown in the left and right panel, respectively. (a) GPCC, (b) CRU, (c) UD, (d) the average of (a-c) as OBS, (e) NOAA-20C, (f) ERA-20C, (g) NCEP1, and (h) JRA55. The red curves outline the SHLM region.

### **Part 4: Wettenning of SHLM**





Table 2 Linear trends (mm d-1 cent-1) of SHLMP in observation and reanalysis. \* and

\*\* indicate the significance of 95% and 99%.

| Region     | OBS    | NOAA-20C | ERA-20C |
|------------|--------|----------|---------|
| SH monsoon | 0.14*  | 0.73**   | 0.62**  |
| SAF        | 0.083  | 0.029    | 0.18    |
| AUS        | 0.15** | 0.84**   | 0.37    |
| SAM        | 0.24** | 1.25**   | 1.1**   |

Changes of SHLM and three regional monsoon precipitation (mm d<sup>-1</sup>) from observation (left) and four reanalysis datasets (right). (a, e) for SHLMP, (b,f) for SAF precipitation, (c, g) for AUS precipitation, and lower panel (d, h) for SAM precipitation. The bars in (a) and solid curves in (b) indicate the 3-year running mean SHLMP. The dashed lines indicate linear trends.

### **Part 4: Wettenning of SHLM**





Linear trends of precipitation (mm d<sup>-1</sup> cent<sup>-1</sup>) and 850 hPa circulation (m s<sup>-1</sup> cent<sup>-1</sup>) during austral summer (DJFM) for observation (left) and reanalysis (right). (a) for GPCC during 1901-2014, (b) for CRU during 1901-2014, (c) for UD during 1901-2014, (d) for OBS (the average of GPCC, CRU, and UD) during 1901-2014. (e) for NOAA-20C during 1901-2014. (f) for ERA-20C during 1901-2010, (g) for NECP1 during 1949-2014, and (h) for JRA55 during 1959-2014. The red curves outline the SHLM region.

### **Part 4: Mechanism**





Moisture term, and (e) Circulation term.

### **Part 3: Mechanism**





(a) Linear trends of SST (shading, K cent<sup>-1</sup>) and 850 hPa specific humidity (contours, g kg<sup>-1</sup> cent<sup>-1</sup>). (b) Linear trends of 500 hPa vertical pressure velocity (shading, 100\*omega, Pa s<sup>-1</sup> cent<sup>-1</sup>) and 850 hPa circulation (vectors, m s<sup>-1</sup> cent<sup>-1</sup>). (c) Linear trends of velocity potential (shading, 10<sup>6</sup> m<sup>2</sup> s<sup>-1</sup> cent<sup>-1</sup>) and divergence winds (vectors, m s<sup>-1</sup> cent<sup>-1</sup>). The purple and green lines indicate the positive and nagtive trends of 850 hPa specific humidity, respectively, with the zero line ploting in black.

### **Part 3: Monsoon circulation indices**





| Region | Definition of the circulation index                          |  |
|--------|--------------------------------------------------------------|--|
| NAF    | U850 (0°–15°N, 30°W–30°E)                                    |  |
| SA     | U850 (10°-20°N, 40°-80°E) minus U850 (25°-32.5°N, 75°-90°E)  |  |
| EA     | V850 (20°–45°N, 110°–130°E)                                  |  |
| WNP    | U850 (5°–15°N, 100°–130°E) minus U850 (20°–35°N, 110°–140°E) |  |
| NAM    | U850 (5°-15°N, 120°-80°W) minus U850 (20°-30°N, 110°-80°W)   |  |
| SAF    | U700 (5°–15°S, 10°–30°E) minus U700 (22.5°–30°S, 15°–35°E)   |  |
| AUS    | U850 (0°-15°S, 90°-130°E) minus U850 (20°-30°S, 100°-140°E)  |  |
| SAM    | U850 (5°–15°S, 70°–40°W) minus U850 (22.5°–30°S, 60°–40°W)   |  |

SHLM and three regional monsoon (SAF, AUS, SAM) circulation index. The dashed lines indicate the linear trends. SHLM is canulated by the averaged of the three regional monsoon indices.









Figure 8 Difference in linear trends between the wet and dry models during 1850-2014. (a) for precipitation (mm d<sup>-1</sup> cent<sup>-1</sup>), (b) for surface temperature (shading, K cent<sup>-1</sup>) and 850 hPa circulation (m s<sup>-1</sup> cent<sup>-1</sup>), (c) for 500 hPa vertical pressure velocity (shading, 100\*omega, Pa s<sup>-1</sup> cent<sup>-1</sup>) and 850hPa circulation (m s<sup>-1</sup> cent<sup>-1</sup>), and (d) velocity potential (shading,  $10^5 \text{ m}^2 \text{ s}^{-1} \text{ cent}^{-1}$ ) and divergence winds (m s<sup>-1</sup> cent<sup>-1</sup>) at 200 hPa.





Figure 8 Difference in linear trends between the wet and dry models during 1850-2014. (a) for precipitation (mm d<sup>-1</sup> cent<sup>-1</sup>), (b) for surface temperature (shading, K cent<sup>-1</sup>) and 850 hPa circulation (m s<sup>-1</sup> cent<sup>-1</sup>), (c) for 500 hPa vertical pressure velocity (shading, 100\*omega, Pa s<sup>-1</sup> cent<sup>-1</sup>) and 850hPa circulation (m s<sup>-1</sup> cent<sup>-1</sup>), and (d) velocity potential (shading, 10<sup>5</sup> m<sup>2</sup> s<sup>-1</sup> cent<sup>-1</sup>) and divergence winds (m s<sup>-1</sup> cent<sup>-1</sup>) at 200 hPa.





Figure 10 (a) Observed zonal SST gradient (Indo-Pacific region minus eastern Pacific region) index relative to the average of 1901-2014. (b) Standardized zonal SST gradient index and SH monsoon precipitation index after 79-y running mean in CESM2 preindustrial simulation. \*\* indicates significance at a 99% confidence level.

### Part 4: Monsoon Vs. Hadley circulation





Climatology (shading) and linear trends of meridional divergence circulation from (left) NOAA-20C reanalysis and (right) CMIP6 models. (a) Zonal averaged Hadley circulation. (b) as (a), except for the monsoon region  $(10^{\circ}\text{E}-50^{\circ}\text{E}, 110^{\circ}\text{E}-150^{\circ}\text{E}, \text{ and } 80^{\circ}\text{W}-40^{\circ}\text{W})$ . (c) as (a), except for the non-monsoon region. (d-f) as (a-c), except for the difference between wet and dry models. Shading shows the climatological mean of vertical pressure velocity (hPa d<sup>-1</sup>). Vector is the composite of 100 times vertical velocity change (Pa s<sup>-1</sup> cent<sup>-1</sup>) with zonal and meridional wind trends (m s<sup>-1</sup> cent<sup>-1</sup>) in (a) and (b), respectively.

### Part 5: Summary



Observational datasets show the decrease in NH land monsoon during 1900-2014, and the SH land monsoon precipiation is increased during the same period. CMIP6 models well reproduced the decrease in NH monsoons, with the single forcing experiment demostrating the dominate role of external forcing. However, CMIP6 model underestimates the observed SH land monsoon trend. Analysis pointed to the zonal SST graident drives the SH monsoon increase since preindustrial.

✓ What is the relative role of AA and GHG forcing in the centennial-scale NHLM precipitation trend?
A: AA dominates the decline of NHLM precipitation, and GHG explains the GMST increase. AA is five time as the GHG on NHLM precipitation change, in terms of per GMST change.

Why does the AA forcing dominate the declining NHLM precipitation?
AA's AOD decreases the surface irradiance for evaporation and more effectively alter the surface temperature gradients, thus monsoon circulation.

 $\checkmark$  Which mechanism is responsible for the increase of SH monsoon?

A: (i) The tropical zonal SST graident drives the Walker circulation change, which redistribute moisutre from the tropical ocean to the monsoon region. This SST graident may not full caused by the anthropogenic forcing. The nature varibility is one of possiblity.

(II) Regional Hadley circulation over the monsoon region dominates the zonal mean Hadley cell and ITC7



## Thanks for your attention! Comments and suggestions are welcome!

jianc@nuist.edu.cn