

The Eighth WMO International Workshop on Monsoons (IWM-8)

Constrained projection of Afro-Asian monsoon precipitation

Tianjun Zhou

March 20, 2025, Pune, India

Chen, Z., Zhou, T.*, Chen, X. et al. (2022) Observationally constrained projection of Afro-Asian monsoon precipitation. Nat Commun 13, 2552.

Introduction

- Monsoon precipitation has large variabilities and influences the global energy budget and water cycle (e.g. Wang & Ding, 2008; Trenberth et al., 2011)
- The variability of precipitation affects the water resource sustaining two third of global population (e.g. Epule et al., 2014; Zhang et al., 2018; Wang B. et al., 2020b)

Monsoon Domain

SAS .

✓ Definition (Wang et al., 2012):

✓ Precipitation Annual Range > 2 mm day⁻¹

✓ Percentage of Local Summer Precipitation > 55%

Afro-Asian Summer Monsoon (AfroASM)

Climatology of Summer Precipitation and Low-level Circulation

✓ Vector: low-level wind field

(Ding & Li, 2016 J. Trop Meteor)

120E

150E

180

60E

30E

90E

- A zonally planetary-scale system, with a large-scale rainbelt on various timescales (e.g. Stager et al., 2010 Science; Ding & Li, 2016 J. Trop Meteor; Li et al., 2017 AAS; Ding et al., 2020 Trans. Atmos. Sci.; He et al., 2020 JC)
- AfroASM sustains billions of people living in many developing countries

(e.g. Epule et al., 2014 Regional Env. Change; Zhang et al., 2018 Nat. Commun.; Wang et al., 2020 BAMS)

Afro-Asian Summer Monsoon (AfroASM)

- In-phase changes at various time scales due to the modulation of ITC and SST variation of North Atlantic (e.g. Ji et
 - al., 1993 Global & Planetary Change; 严中伟和Petit-Maire, 1995 地理学报; 宋燕和季劲钧, 2001 大气科学; 宋燕等, 2009 大气科学; Stager et al., 2011 Sciences; 丁一汇和李怡, 2016 热带气象学报; Li Y. et al., 2017 AAS; 丁一汇等, 2020 大气科学学报)

ITC: Interhemispheric thermal contrast

Future Projection of Monsoon Precipitation

Wang B. et al. (2020 JC)

• A pronounce increase over global (NH) monsoon region in the future projection

(e.g. Christensen et al., 2013; Kitoh et al., 2013 JGRA; Lee & Wang, 2014 CD; Wang B. et al. 2020 JC; Chen Z. et al., 2020 GRL; Ha et al., 2020 GRL; Moon & Ha, 2020 npj)

• Response of AfroASM precipitation is stronger than that over global and other sub monsoon region

(Lee & Wang, 2014 CD; Ha et al., 2020 GRL; Jin et al., 2020 JC; Chen et al., 2020 GRL; He et al., 2020 JC)

Projection Uncertainty

Evolution of uncertainty components

- Model uncertainty is the dominant contributor throughout the 21st century (~90%)
- Internal variability is important in the near future
- Scenario uncertainty becomes important for extreme precipitation at the end of the century •

Zhou, T., Lu, J., Zhang, W., & Chen, Z. (2020). The sources of uncertainty in the projection of global land monsoon precipitation. Geophysical Research Letters, 47, e2020GL088415.

- ECS: equilibrium climate sensitivity
 - global mean surface air temperature change at equilibrium for a doubling of pre-industrial CO2
- The range of equilibrium climate sensitivity (ECS) is the largest of any generation of models (Gettelman et al., 2019 GRL; Meehl et al., 2020 SA; Zelinka et al., 2020 GRL)

Equilibrium climate sensitivity (gregory method) and transient climate response

CLIMATE MODELS: CHOICE MATTERS

(Hausfather et al. 2022, Nature)

8

Constrained projection in IPCC AR6

 Multiple lines of evidence for GSAT changes for the long-term period, 2081–2100, relative to the average over 1995–2014, for all five priority scenarios.

9

• What are the future changes and uncertainty in Afro-Asian

monsoon precipitation?

• How could high ECS of CMIP6 model impact the monsoon

projection, and can we constrain the precipitation projection

using observational information?

Data and Method

Model	Institute/Country	Lat x Lon
ACCESS-CM2	CSIRO/Australian	144 x 192
ACCESS-ESM1-5	CSIRO/Australian	145 x 192
BCC-CSM2-MR	BCC-CMA/China	160 x 320
CAMS-CSM1-0	CAMS-CMA/China	160 x 320
CESM2-WACCM	NCAR/USA	192 x 288
CNRM-CM6-1	CNRM-CERFACS/France	128 x 256
CNRM-ESM2-1	CNRM-CERFACS/France	128 x 256
CanESM5	CCCMA/Canada	64 x 128
CanESM5-CanOE	CCCMA/Canada	64 x 128
EC-Earth3	EC-Earth-Consortium/EU	256 x 512
EC-Earth3-Veg	EC-Earth-Consortium/EU	256 x 512
FGOALS-f3-L	LASG-IAP/China	180 x 360
FGOALS-g3	LASG-IAP/China	90 x 180
GFDL-CM4	GFDL-NOAA/USA	180 x 360
GFDL-ESM4	GFDL-NOAA/USA	180 x 360
GISS-E2-1-G	GISS-GISS/USA	90 x 144
HadGEM3-GC31- LL	MOHC/UK	144 x 192
INM-CM4-8	INM/Russia	120 x 180
INM-CM5-0	INM/Russia	120 x 180
IPSL-CM6A-LR	IPSL/France	143 x 144
MCM-UA-1-0	UA/USA	80 x 96
MIROC6	MIROC/Japan	128 x 256
MIROC-ES2L	MIROC/Japan	64 x 128
MRI-ESM2-0	MRI/Japan	96 x 192
MPI-ESM1-2-HR	MPI-M/Germany	192 x 384
MPI-ESM1-2-LR	MPI-M/Germany	96 x 192
NESM3	NUIST/China	96 x 192
UKESM1-0-LL	MOHC/UK	144 x 192

Surface Air Temperature	Period	Reference
BEST, 1° x 1°	1854-2018	Rodhe et al., 2013
GISTEMP, 2° x 2°	1880-2018	Lenssen et al., 2019
Cowtan & Way v2, 5° x 5°	1850-2019	Cowtan & Way, 2014
NOAAGlobalTemp v5	1880-2021	Vose et al., 2012

- CMIP6 30 Models: Historical and SSP5-8.5
- Methods
 - ✓ Emergent Constraint (e.g. Klein & Hall, 2015; Hall et al., 2019; Brient, 2019)
 - ✓ Present day: 1965-2014
 - ✓ Future Projection: 2050-2099

Dominated Mode of Projected Uncertainty

Dominated mode of uncertainty: synchronized precipitation changes in the model spread

Uncertainty in surface warming related to PC1

PC1 (bar) & ITC (dot)

A robust "NH warmer than SH" pattern in both future and historical period (r = 0.71, p < 0.01)

ITC: Interhemispheric Thermal Contrast AfroASM: Afro-Asian Summer Monsoon

• NHSM precipitation and cross-equatorial flow is controlled by NH-SH SAT contrast.

14

LabESM

PC1-related pattern of present Ts trend

PC1-related pattern of projected Ts change

Emergent Constraint Method

X Axis: Present-day Predictor

- Based on the physical link between a modelled but observable variable in the present day (Predictor) and a projected variable in the future climate system (Predictand):
 - P ~ aX + b
- Using the present-day reliable observation (X_o), we can constrain the result in the projection:
 - $P^* = aX_o + b$
- Predictor (source of intermode uncertainty):
 - SST over cold-tongue regions (Chen X. et al., 2020 NC)
 - Convection over western Pacific (Zhou et al., 2019 ERL; Yan et al., 2019 JC)
 - SST warming difference between tropical and subtropical ocean (Biasutti et al., 2009 JC; Park et al., 2015 NC)

Inter-model Spread of ITC from ECS

Observational Constraint on the AfroASM Precip.

- The ITC₁ can well explain the leading mode of model uncertainty in projected AfroASM precipitation.
- The constrained value of AfroASM precipitation is 9.5%±6.3% (PC1 = -0.60±0.80)

Corrected AfroASM Precip. Projection

- Less increase than that in the unconstrained (raw) projection by ~30%
- Projected uncertainty is reduced by 10%, most form reducing the high tail of increased precipitation
- Constrained increases over West African, East Asian, and South Asian monsoon regions are 7%, 8%, and 12%

Compare with other constrained results

20

Relationship btw Projected Precip. and Runoff

Precipitation vs Runoff

SSP5-8.5, 2050-2099

Impact on the Potential Water Availability

Each subplot: land fraction

- Left PDF: Pr-related
- Right PDF: Runoff-related

Shading in PDF

• significant increase

increase exceeds the range of inter-model standard deviation

• The land area that will experience a significant increase of precipitation (runoff) is ~57% (66%) of that of the raw projection.

□ The projected uncertainty of AfroASM precipitation

- Projected spread is related to present-day ITC biases
- > Models with a larger present-day ITC trend tend to project a greater precipitation increase

□ The constrained projection of AfroASM precipitation

- > The precipitation is projected to increase by ~10% in the constrained projection
- Only ~70% of the raw projection, with the largest reduction in the West African monsoon region.
- Projected uncertainty is reduced by 10%
- The land area experiencing a significant increase in precipitation and potential water availability are ~57% and ~66% of the raw projection

Thank you for your attention!

zhoutj@lasg.iap.ac.cn

Chen, Z., **Zhou, T.***, Chen, X. *et al.* (2022) Observationally constrained projection of Afro-Asian monsoon precipitation. *Nat Commun* 13, 2552.

The low-level cross-equator flow

-0.2

-0.1 -0.05 0.05 0.1

0.2 0.3

Low-level (925 hPa) circulation (vector) and meridional wind (shading) related to PC1 (a, b) and ITC (c, d)

-0.03 0.00 0.03 0.06 0.09

(m s⁻¹)

120E

0.3

60E

0.1

-0.05

-0.2

Constrained circulation index

AfroASM circulation index: vertical shear of zonal winds between 850 and 200 hPa averaged in a zone stretching from tropical North Atlantic eastward to the Philippines (0–20°N, 30°W–120°E).