

West African Monsoon and African Easterly Wave Dynamics Investigated Through Moisture Sensitivity Calculations

March 17, 2025

Chris Davis (NSF National Center for Atmospheric Research) Kelly Núñez Ocasio (Texas A&M University) United States of America

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 185297'

West African Monsoon (WAM)

Thorncroft et al., 2011, QJRMS

Hourdin et al., 2010, BAMS

Life Cycle of a Cape Verde Hurricane

Weatherworksinc.com

Questions to be Addressed

- The West African Monsoon System is multi-scale and interconnected
 - land-atmosphere interaction
 - deep moist convection
 - mesoscale convective systems
 - easterly waves (leading to tropical cyclones)
 - monsoon circulations
- Water vapor is an essential aspect of this interconnectedness
- How does the system behave when water vapor is perturbed substantially?
- What can we learn about the multi-scale dynamics through this lens?

Numerical Simulation Configuration

- Model for Prediction Across Scales (MPAS) – limited area 15-3 km grid spacing
- Moisture anomalies: +20% and -50% to initial and boundary conditions
- 5-day integrations during September, 2006, prior to Hurricane Helene
- Small ensembles to assess signal to noise

Total Precipitation (5 days)

Hovmoller Diagrams of Rainfall and Easterly Wave Tracks

(blue dots denote wave trough location)

Zonal Mean Zonal Flow over African Continent

Similar to longterm climatology

Small differences from ERA5

AEJ intensifies and shifts northward; TEJ intensifies and extends to higher altitude

AEJ weakens, shifts southward and broadens; TEJ weakens and lowers

Changes in the Zonal Mean Flow Responsible for Changes in Wave Speed

Vertical Mass Flux in Different Wave Phases Over Continent

(different dashed curves for ensemble members)

Wave Grows More Slowly In MOIST (Offshore)

Differences emerging after the wave reaches the coast are likely related to convection over the Guinea Highlands in MOIST.

Summary

- Moisture perturbations have a large effect across spatial scales in the WAM, even on time scales of a few diurnal cycles
- The zonal mean state changes markedly in response to moisture
 - AEJ pushes northward
 - Monsoon westerlies penetrate farther north
- The above means that easterly wave slows down
- Upon reaching the West African coast, with greater moisture
 - Convection over the Guinea highlands becomes persistent, while wave passes through
 - The wave slows further
 - The wave weakens, with implications for TC genesis
 - Is there evidence of this effect in different waves environments?

Reference: Núñez Ocasio, K. M., Davis, C. A., Moon, Z. L., & Lawton, Q. A. (2024). Moisture dependence of an African easterly wave within the West African monsoon system. *Journal of Advances in Modeling Earth Systems, 16*, e2023MS004070. <u>https://doi.org/10.1029/2023MS004070</u>

