Authors from the Asian Australian Monsoon sub-working group:

Thea Turkington¹, Koh Tieh Yong², Donaldi Permana³, Lin Wang⁴, Joseph Basconcillo⁵, Zizhen Dong⁶

1 Centre for Climate Research Singapore,

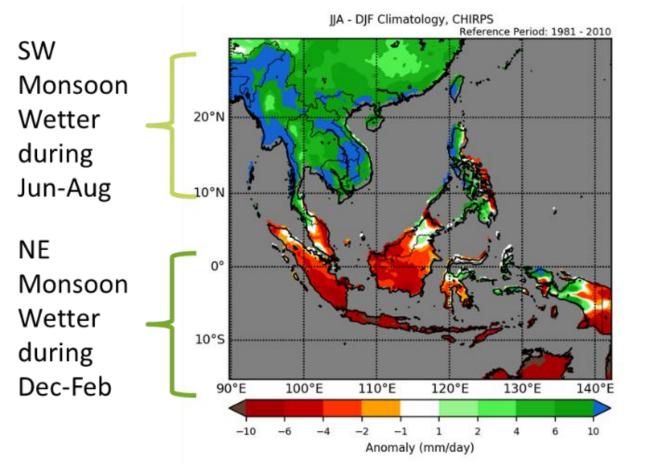
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

3 Indonesia Agency for Meteorology Climatology and Geophysics (BMKG),

4 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences,

5 Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA),

6 Department of Atmospheric Sciences, Yunnan University


Manuscript in preparation

Southeast Asian Monsoon Index for Its Monitoring and Prediction

Southeast Asian Monsoon – where?

- Two 'monsoon periods'
 - Northeast/boreal winter
 - Southwest/boreal summer
- Focus on 10 countries:
 - Brunei Darussalam, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand, Viet Nam

Southeast Asian Monsoon – why?

To have a regionally coherent 'language' for monsoon, onset, strength, termination within the region:

- Subseasonal and seasonal (including monitoring):
 - ASEAN Climate Outlook Forum
 - Southeast Asia Regional Climate Centre Network
- Climate change projections

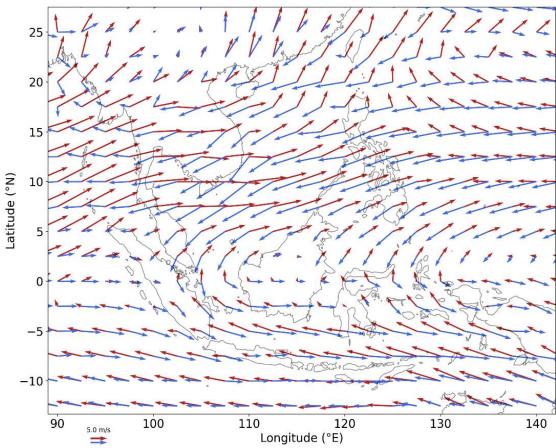
\underline{Not} to replace national definitions

• Definitions tied to user requirements and local conditions

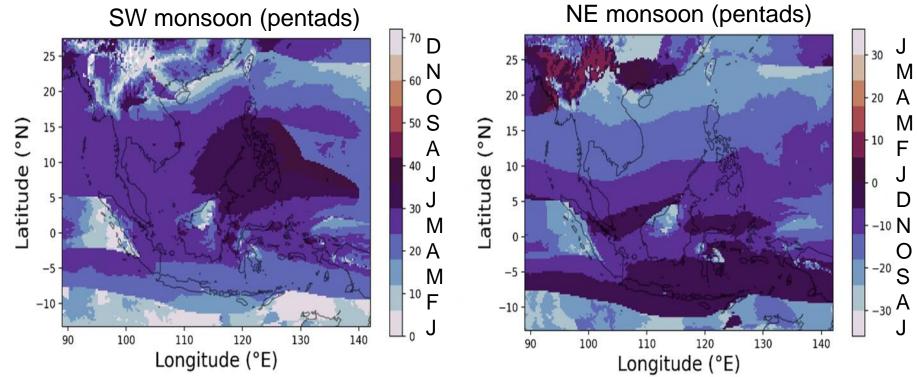
Southeast Asian Monsoon – what to use?

<u>Variables used in previous studies/national definitions:</u>

- Rainfall
- Wind (different levels)
- OLR
- Precipitable Water
- And combinations of above

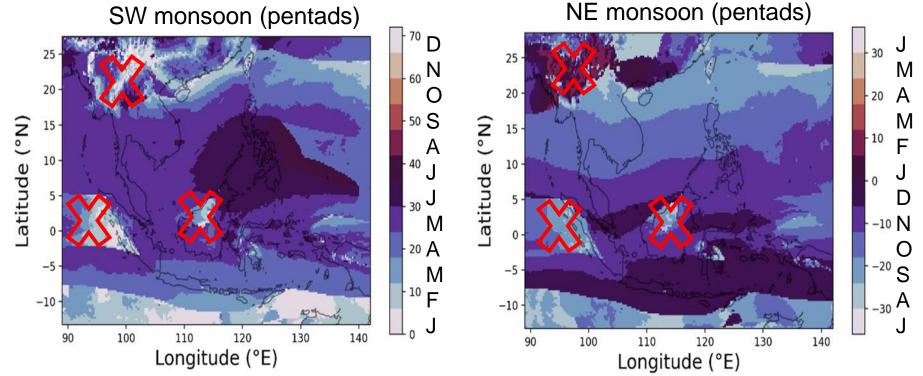

What the index needs to be able to do:

- Monitored in real time
- Capture gradual onset/termination within the region
- Long homogeneous record (study past change, understanding decadal variability, seasonal variability)
- Captured by GCMs (future studies/climate change, or seasonal models)


Southeast Asian Monsoon – what we did Peak winds in the climatology (1991 – 2020) :

- Using ERA5 850hPa winds
- Steps:
 - 1. Turn dataset into 'pentads'
 - 2. Find peak wind speak for each season (NE/SW) based on 1991 – 2020 climatology
 - 3. Apply correction to account for winds not 180degrees apart
 - 4. For each pentad, find strength of the wind in the direction of corrected peak monsoon = monsoon index

Peak winds in the climatology (1991 – 2020) : NE monsoon (blue) SW monsoon (red)


Southeast Asian Monsoon average onset 1991 - 2020

Preliminary definition: >0.4 for 3 consecutive pentads (~15 days)

- SW monsoon (right): South to north (in the west) then east
- NE Monsoon (left): North to south (more general apart from equator)

Southeast Asian Monsoon average onset 1991 - 2020

• Some regions no clear onset:

- Parts of equator: west of Sumatra, parts of Borneo
- \bullet N Mainland Southeast Asia (SW), NW Mainland Southeast Asia (NW)

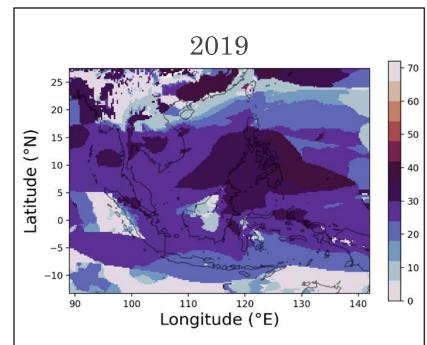
>> Further development of classification of peak winds helps with some of these regions

Comparison of two years

2019

- Strong positive IOD in the second half of the year
- Weak/borderline El Nino at the start of the year

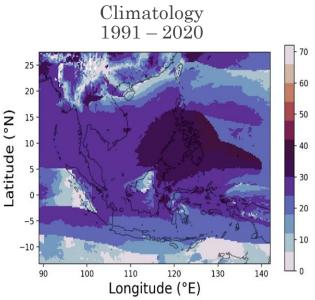
Impacts:

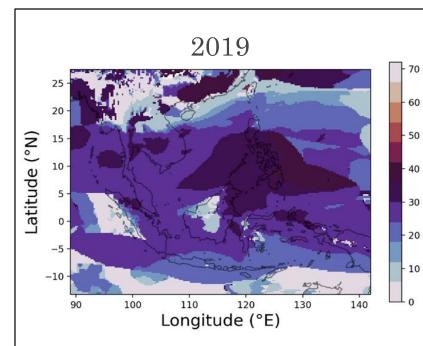

- Drought in Indonesia Jun –Aug affecting 1.3M people
- Fewer people affected by floods during Apr/May in Indonesia (compared to 2022) - ADINet

2022

- La Niña event from late 2021 early 2023
- Negative IOD in the second half of the year

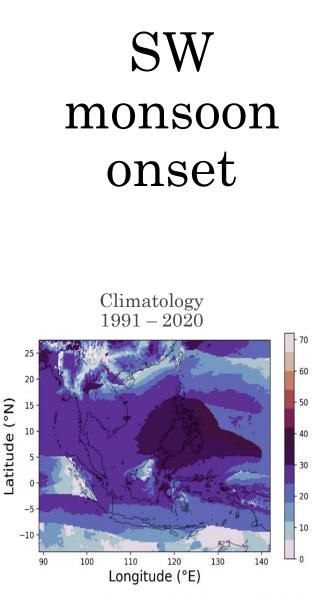
Impacts:

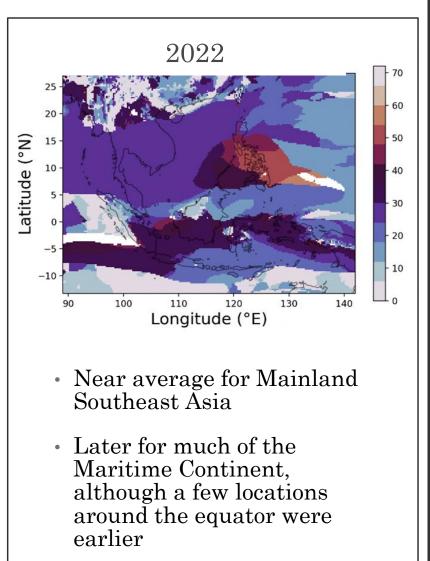

- Malaysia, flooding and second largest landslide (December)
- More people displaced during Nov/Dec due to floods in Indonesia (compared to 2019) -ADINet

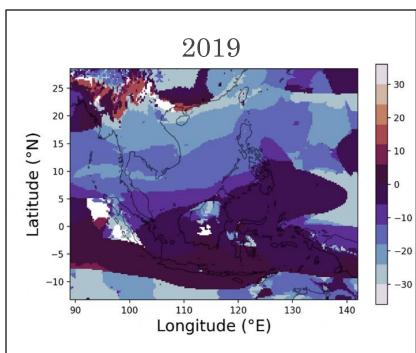


- Near average (within two pentads) for most
- Few locations with later start in Mainland Southeast Asia, including Bangkok.

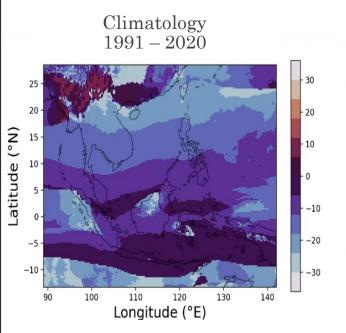
>> in line with neutral ENSO, IOD conditions

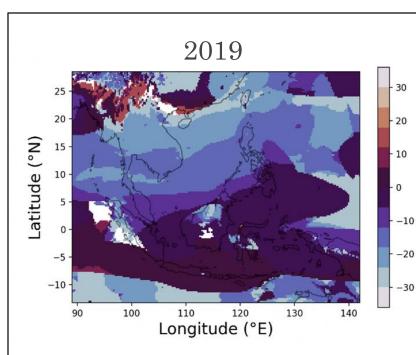

SW monsoon onset




- Near average (within two pentads) for most
- Few locations with later start in Mainland Southeast Asia, including Bangkok.

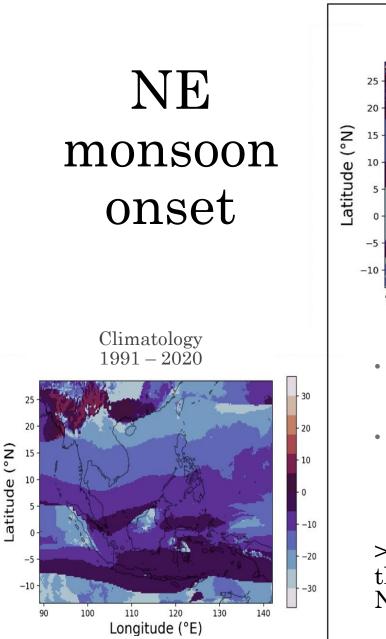
>> in line with neutral ENSO, IOD conditions

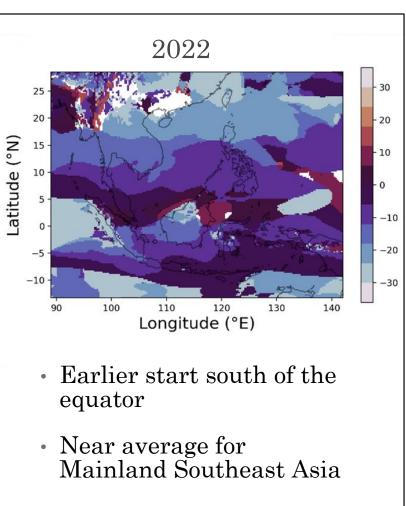

>> later onset in Maritime Continent in line with La Niña conditions



- Later start south of the equator
- Rest of the region nearaverage

>> in line with strong positive IOD


NE monsoon onset



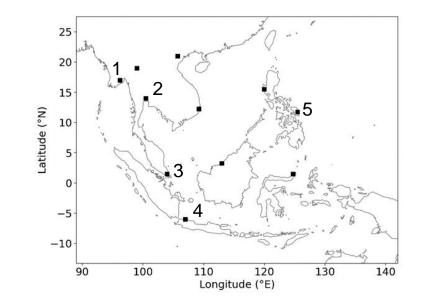
- Later start south of the equator
- Rest of the region nearaverage

>> in line with strong positive IOD

>> Earlier onset south of the equator in line with La Niña event

Duration at select locations

Duration (number of pentads between onset and termination)


Southwest monsoon:

- Jakarta has earliest onset longest duration (longer in 2019 than 2022)
- Borogan has latest onset shortest duration

Northwest monsoon:

• Earlier onset - longer duration

Duration SW + NE ~ 41 - 62 pentads, with 10 - 33 pentads with 'inter-monsoon' periods

	SW monsoon			NE monsoon		
	1991- 2020	2019	2022	1991- 2020	2019	2022
1. Yangon	26.5	27	26	15	18	24
2.	25	20	27	22.5	32	32
Bangkok 3. Singapore	35	39	45	22	29	13
4. Jakarta	40.5	44	26	21.5	15	24
5.	16	19	4	36	37	30
Borogan						

Summary & Next Steps

- New monsoon definition to capture Northeast and Southwest Monsoon periods in Southeast Asia
- Definition captures onset for much of the regions
 - Although there are some locations for which it doesn't work (particularly along the equator)
- Comparison of 2019 and 2022 show some of the characteristics of delayed/earlier onset as expected based on ENSO and IOD

<u>Next steps:</u>

- Development of more objective criteria for peak winds
 - Work led by Donaldi Permana
- Discuss during upcoming ASEANCOF
- Assess the predictability of the monsoon index

Asian Australian Monsoon sub-working group:

Thea Turkington¹, Koh Tieh Yong², Donaldi Permana³, Lin Wang⁴, Joseph Basconcillo⁵, Zizhen Dong⁶

1 Centre for Climate Research Singapore,

2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

3 Indonesia Agency for Meteorology Climatology and Geophysics (BMKG),

4 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences,

5 Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA),

6 Department of Atmospheric Sciences, Yunnan University

Manuscript in preparation

Thank you for your attention