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- Goalis to improve sub-seasonal to seasonal (S2S) forecasts of Indian summer monsoon
rainfall using machine learning

- We use convolutional neural networks (CNNSs) to post-process forecasts of precipitation from
three sub-seasonal ensemble prediction systems (NCEP GEFSv12, ECMWEF, IITM ERPv2)

- Based on U-Net architecture used globally by Horat & Lerch (2023)

- Benchmark skill against logistic regression
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Datasets

Summary of Data and Model Characteristics

Thursday

Model GEFSv12 ECMWEF IITM ERPv2
Resolution 1° x 1° 1.5° x 1.5° 0.5° x 0.5°

Hindcast Period 1989-2018 2003-2018 2003-2018

# Members 11 10 18

Initialization Dates  |Every Wednesday Every Monday and|Once in a week but for

fixed dates, e.g., 4th
May, 11th May, 18th
May, 25th May, 1st
June, 8th June, 15th

June, and so on.

resolution

Observation: Indian Meteorological Department (IMD) rainfall regridded to GCM spatial

Training Season: June-September

Lead Times: O-/ days (Week 1), 7-14 days (Week 2), 14-28 days (Weeks 3&4)
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U-Net Arcnitecture
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Training/Validation/Test

70%/20%/10% proportion of hindcasts

To assess performance, we employ a bootstrap approach, or Monte-Carlo Cross Validation (MCCV) with N = 10 bootstraps, to compute
individual skill scores on fine-tuned U-Nets before averaging them.

Train/Val Years Test Years Tuned U-Nets
Bootstrap 1 1 | |

Bootstrap 2

Bl BEEE N

Bootstrap N
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Weeks 3-4 Individual model RPSS Skill - tull hindcast periods

Baseline ELR

U-Net

ITM
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U-Net beats
baseline RPSS

Models with
longest
hindcasts have

highest RPSS
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Latitude

4

Weeks 3-4 Anomaly Correlation S.

Based on weekly anomalies
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Relative RPSS performance of GCM+UNet is consistent with the simple anomaly correlation.
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U-Net Multi-model ensemble Weeks 3-4 RPSS Skill
Common 2003-2018 Period

ITM GEFSv12 ECMWEF
mean:0.00, max:0.15, min: -0.10 mean:0.00, max:0.11, min: -0.10 mean:0.03, max:0.15, min: -0.08
0.20 0.20 0.20
0.15 0.15 0.15
0.10 0.10 0.10
- 0.05 - 0.05 - 0.05
- 0.00 - 0.00 - 0.00

- =0.05

- -0.05 - =0.05
-0.10 -0.10 -0.10
-0.15 -0.15 -0.15
-0.20 -0.20 =0.20

Common set of hindcasts (2003-2018) and ¢
common 1 x 1 spatial resolution
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U-Net Multi-model er

Common 2003-2018 Period
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We aggregate each individual model’s forecasts by

averaging their output probabilities and
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0.20
0.15
0.10

-0.10
-0.15
-0.20

- 0.05
- 0.00

- =0.05

&2 COLUMBIA CLIMATE SCHOOL
CENTER FOR CLIMATE SYSTEMS RESEARCH



U-Net Multi-model er

Common 2003-2018 Period

TM

mean:0.00, max:0.15, min: -0.10
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We aggregate each individual model’s forecasts by
averaging their output probabilities and

normalizing

The MME performs on par
with the best individual
model for every lead time
and architecture. (UNet or
ELR). Also gives more
positive RPSS values
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across the domain.
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Mean RPSS

RPSS Gridpoint Distributions

Averages over 10 bootstrap samples

Extended Logistic Regression
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MME skill exceeds (or equals) best individual model at all lead times.
The U-Net increases the skill at many points, but decreases at others.
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ceks 3-4

wk3-4-Below Normal
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U-Net forecasts are sharper than the baseline ELR
Both U-Net and ELR have good and comparable reliability.
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Example MME U-Net Weeks 3-4 Forecast
[ssued 14 Jul 2023 - Target Period 28 Jul-11 Aug

Observed Percentile (w.r.t. to 1989-2014)
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Conclusions

- U-Net outperforms Extended Logistic Regression (ELR) in terms of calibration skill, despite
challenges related to the relatively short hindcast data records

- The multi-model ensemble (MME) further enhances the forecast skill, achieving performance
comparable to the best individual model and showing consistent improvements across the

domain.

- Real-time forecasts for the summer of 2023 revealed both successful predictions and areas
for improvement
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