How do Scale Interactions influence the Indian Summer Monsoon?

Dhishana and Sarvesh Dubev

Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, India. Email: dhishanapravi@gmail.com

Introduction

- Scale energetics is an approach kinetic or estimate the available potential energy exchanges between two chosen scales (Dubey et al., 2018).
- · The energy exchanges between seasonal mean to LPS and to ISO (30-60 dav mode). during 1950-2021 JJAS months (122 days) is calculated.

Data & Methodology

Fig. 1: Dominant modes of oscillations present during Indian Summer monsoo

Approach

Co-spectra Nth fourier coefficient of $Pn(u,v) = 2R (Un^* Vn)$ u(t) and v(t)

```
K(n) = \frac{1}{2} [P_n(u, u) + P_n(v, v)] \xrightarrow{\text{The KE per unit mass}}_{\text{for nth frequency}}
```

Horizontal gradient of seasonal mean u and v wind $\langle K. K_n \rangle = - \left[P_n \left(u, \frac{\partial}{\partial x} u u \right) + P_n \left(u, \frac{\partial}{\partial y} v u \right) + P_n \left(v, \frac{\partial}{\partial x} u v \right) + P_n \left(v, \frac{\partial}{\partial y} v v \right) \right]$

+ $P_n\left(u, \frac{\partial}{\partial p}\omega u\right)$ + $P\left(v, \frac{\partial}{\partial p}\omega v\right)$ + $\frac{tan\theta\phi}{a}P_n(u, uv) - P_n(v, uu)$] Horizontal gradient of seasonal Product of curvature terms mean u and v wind and seasonal mean u and v wind

Index	Definition
Rainfall Index	Normalized rainfall by its own standard deviation.
KE Index	Normalized KE by its own standard deviation.
Niño3.4 Index	Sea Ice and Surface Temperature (SST) anomaly averaged for JJAS over the Niño 3.4 region.
PDO Index	The projections of monthly mean SST anomalies onto their first EOF vectors in the North Pacific.
MISO Index	10-90 days filtered vorticity at 850 hPa averaged over 80° N-85°N, 12°N-22°W normalized by its own standard deviation.
LPS Days	Number of LPS days in JJAS season with period of 3-7 days.

Fig. 3: Power spectrum for (left) vertically integrated mean KE, (middle) for seasonal mean rainfall and (c) scatter plot for the same

Out-of Scale Interactions

Fig. 5: Trends of vertically integrated KE exchanges from meanflow to ISO 10-90 mode, meanflow to ISO 30-60 mode, meanflow to ISO meanflow to ISO 30-60 mode, meanflow to ISO to LPS scale and ISO to LPS.

Fig. 8: Wavelet coherence for K02Kn (ISO1090) and RF Indices.

Discussions & Conclusions

- The spatial distributions of the scale interactions in locations that occur significantly influence the corresponding frequencies, highlighting the significance of scale interactions in the Indian summer monsoon
- The KE in the Arabian Sea explains the 40% of rainfall in the Indian subcontinent
- KE exchange from meanflow to LPS significantly increases with the increase of mean KE.
- the ISO 30-60 day mode regulates the monsoon meanflow in central India. In contrast, meanflow regulates all other higher frequency modes over the Northern Indian Ocean.
- The MF-ISO (30-60 day mode) interaction is more dominant in the Arabian Sea (AS), while the ISO (10-20 day mode) and LPS interact more with the meanflow in the Bay of Bengal (BoB).

Future Scope

- Incorporating these KE exchanges into predictive frameworks could bridge the predictability gaps identified in sub-seasonal to seasonal (S2S) models.
- · Specifically, the patterns of the out-of-scale KE interactions may serve as reliable precursors which could potentially enhance the prediction of ISV-linked rainfall anomalies.

References

- Dhishana, R., Dubey, S., Singh, R. et al. Characteristics of spectral energetics during contrasting rainfall years in Central India. Theor Appl Climatol 156, 48 (2025). https://doi.org/10.1007/s00704-024-05235-8 Dubey, S., Krishnamurti, T. N., & Kumar, V. (2018). On scale interactions between the MJO and synoptic scale. Quarterly Journal of the Royal Meteorological Society, 144, 2727–2747. https://doi.org/10.1002/ii.3400
- /ai 3400
- https://doi.org/10.1002/gi.3400 Krishnamurthy, V., & Ajayamohan, R. (2010). Composite structure of monsoon low pressure systems and its relation to Indian rainfall. Journal of Climate, 23(16), 4285–4305. https://doi.org/10.1175/2010/cli2e53.1 Saltzman, B., 1957: Equations Governing The Energetics Of The
- Larger Scales Of Atmospheric Turbulence In The Domain Of Wave Number J Meteor 14 513-523

Acknowledgements

All the freely available datasets used for the study

Eighth WMO International Workshop on Monsoons (IWM-8)

-

+

è.

-

· •