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The Indian Summer Monsoon (ISM) is a critical climate phenomenon that sustains

agriculture and water resources in South Asia. A key feature of the ISM is the

Monsoon Intraseasonal Oscillation (MISO), a 30–60 day oscillation that drives

active and break phases of rainfall, significantly influencing sub-seasonal rainfall

variability. Predicting MISO is essential for improving sub-seasonal to seasonal

(S2S) forecasts, which are vital for agriculture, water management, and disaster

preparedness. However, traditional numerical weather prediction (NWP) models

struggle to accurately forecast MISO due to its complex, nonlinear dynamics.

Recent advances in deep learning, particularly Transformer models, offer a

promising alternative. Transformers, known for their ability to capture long-range

dependencies and complex spatiotemporal patterns, have shown success in time

series forecasting and atmospheric science applications. This study explores the use

of a Transformer-based model to predict MISO indices, amplitude, and phase,

aiming to enhance S2S forecasting accuracy with reduced computational costs

compared to traditional NWP models.

Data and Methodology

Precipitation Data: Daily precipitation data from the Tropical Rainfall

Measuring Mission (TRMM) 3B42 V7 (1998–2019) and the Global Precipitation

Measurement (GPM) mission 3B-DAY-Early run V6 (2020–2022) were used. GPM

data, with a higher resolution (0.10° × 0.10°), was upscaled to match TRMM’s

resolution (0.25° × 0.25°) using linear interpolation.

Seasonal Forecasts: Seasonal forecasts from the Copernicus Climate Change

Service (C3S) were used for comparison. These include forecasts from the UK Met

Office (UKMO) Unified Model (UM) (2018–2022) and the NCEP Climate Forecast

System (CFS) (2020–2022). Ensemble mean forecasts from NCEP CFSv2 (1° × 1°

resolution) were also used to compare spatial rainfall patterns.

MISO indices: Extended Empirical Orthogonal Function (EEOF) analysis was

applied to longitudinally averaged (60.5°E–95.5°E) unfiltered rainfall anomalies for

the June-July-August-September (JJAS) season (1998–2022). Anomalies were

calculated by removing daily climatological values. MISO1 and MISO2 indices

were derived by projecting the past 15 days of data onto the first two EEOF modes

(Suhas et al., 2012). These indices capture the dominant modes of intraseasonal

variability, forming a time series of over 9,000 data points.

Model Architecture

• 20 years(1998-2017) of data have

been used for training.

• 5 years(2018-2022) of data for

testing

• Optimizer : AdamW

• Learning rate : 0.0001

• Loss function : MSE loss

• No. Of epochs : 75

• D model: 120

• No. of head : 8

• No. layers: 4

Predicting daily MISO indices

The model demonstrated skillful predictions of MISO indices for 2018–2022, with

forecast lead times extending to 18 days, consistently outperforming traditional

NWP models like UKMO and NCEP. It exhibited minimal error growth in MISO

amplitude predictions, with mean absolute error (MAE) increasing slowly as lead

time extended, unlike NWP models, which showed rapid error growth beyond 7

days. The Transformer maintained significantly lower MAE values at all lead times

and achieved higher correlation with observed MISO indices, even at 21 days,

while NWP models often struggled with inconsistent or negative correlations.

Conclusions

Time series of (a) MISO1 and (b) MISO2 indices predicted by the Transformer (14-day lead)
and NCEP CFS V2, compared to observed GPM precipitation for the 2022 monsoon season.
(c) MAE in MISO amplitude and (d) bivariate correlation coefficient for predicted vs.
observed MISO indices, calculated for June–September 2018–2022 (2020–2022 for NCEP).
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Observed and 14-day ahead
predicted MISO phase space
diagrams for 2022: (a)
Observation, (b) Transformer,
(c) NCEP, and (d) UKMO. (e)
Pearson correlation coefficient
for MISO indices and amplitude
as a function of lead time for
the Transformer model,
calculated for June–September
2018–2022 using TRMM+GPM
rainfall data.
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Obs
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Transformer
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(c)

NCEP
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(d)

UKMO

This study develops a deep learning-based Transformer model to predict MISO

indices derived from EEOF analysis of high-resolution precipitation data, capturing

MISO amplitude and phase. The model achieves skillful phase prediction up to 21

days and amplitude prediction up to 14 days, enabling accurate monsoon

active/break cycle forecasts three weeks ahead. This capability is crucial for sub-

seasonal to seasonal (S2S) planning in agriculture and disaster preparedness.

Compared to NWP models, the Transformer demonstrates superior skill in MISO

prediction, offering reliable S2S forecasts with significantly lower computational

resources. The study also used a modified Vision Transformer to predict the

spatiotemporal evolution of MISO, generating spatial patterns of daily precipitation

anomalies. While the model excelled in predicting MISO indices, accurately

capturing the spatiotemporal evolution of rainfall remains a challenge and requires

further refinement.
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